

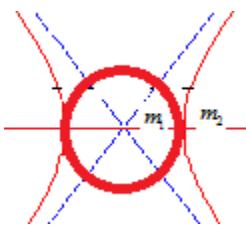
For a given $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ where $f(t), g(t), h(t)$ are analytic functions respect to time.

1- Show that $\vec{T}(t)$ is orthogonal to $\vec{N}(t)$.

2- These four vectors are not orthogonal to each other.

$$u_0 = \langle 1, 0, 0, 0 \rangle \quad u_1 = \langle 1, 1, 0, 0 \rangle \quad u_2 = \langle 1, 1, 1, 0 \rangle \quad \text{and} \quad u_4 = \langle 1, 1, 1, 1 \rangle$$

Use **Gram-Schmidt orthonormalization** to find a set of orthonormal vectors.


Hint: Use $u_0 = \langle 1, 0, 0, 0 \rangle$ as the first vector and find orthogonal vector to it and so on

3- Explain the reason for dot and cross product for components of

$$\text{acceleration } \vec{a} = a_T \vec{T} + a_N \vec{N} \quad \text{Where } a_T = \frac{\vec{r}'(t) \bullet \vec{r}''(t)}{|\vec{r}'(t)|} \text{ and } a_N = \frac{|\vec{r}'(t) \times \vec{r}''(t)|}{|\vec{r}'(t)|}$$

4- Mass m_1 is moving on a unit Circle (center at origin) with ω_1 and at the same time Mass m_2 is moving on a unit Hyperbola with ω_2 . If these masses are connected to each other with a spring, find spring constant

at time $t = 0$ sec to show that the potential energy of spring is equal to kinetic energy of the whole system.

5- Given $a = \langle 0, -g \rangle \text{ m/s}^2$ and $v(0) = \langle v \cos \theta, v \sin \theta \rangle \text{ m/s}$ and $r(0) = \langle 0, 0 \rangle \text{ m}$

- Find $\vec{r}(t)$ and rewrite it in rectangular coordinates
- Find curvature at its maximum height
- Find the directrix of the parabola and explain the significance of it.
- Find the focal point of the parabola and explain the significance of it.
- Find osculating circle at the point on its maximum height.