

1- Similar to the proof of Taylor expansion, find the first 3 terms of $f(x) = e^x$

around zero. Hint: start with $\int_0^x e^x dx = e^x - e^0$

2- Use expansion of $e^x = \sum_1^{\infty} \frac{x^n}{n!}$ to explain the expansions for $\sin x$, $\cos x$. Clearly explain the sign changes in the alternative terms.

3- Prove that hyper-harmonic series $\sum_1^{\infty} \frac{1}{n^p}$ converges if $p > 1$

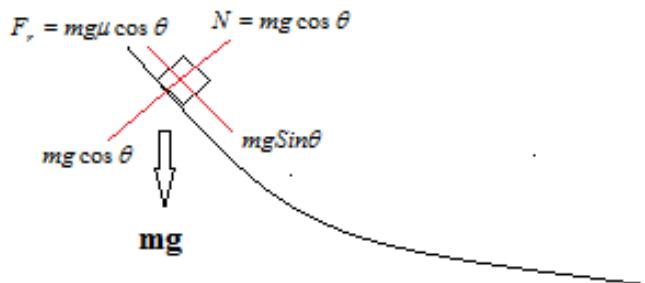
4- Show that $\sum_0^n \frac{(-1)^n}{2n+1}$ converges conditionally and then find the value of the sum

5- Show that $\sum_0^n \frac{(-1)^n n}{2^n (2n+1)}$ converges absolutely and then find the value of the sum

6- Solve the DE $\frac{dy}{dx} - 2y = -2$ at point $(0,3)$ by series solution. Find the compact form of the solution and then find the function that satisfies the solution.

7- What is (are) the point(s) on any differentiable function (Curve) that the curvature is maximum? Show it mathematically

8- A box (weight = $10N$) is sliding down on a track ($y = 1/x$) from $x = 1$ to $x = 2$. If the track coefficient of friction is $\mu_k = 0.1$, what is the value of frictional force at $x = 2$? Hint: consider the curvature of the curve at $x = 2$



9- From the definition of Binormal $\vec{T} \times \vec{N} = \vec{B}$, show that $\vec{T} = \vec{N} \times \vec{B}$ and $\vec{N} = \vec{B} \times \vec{T}$ and from $\vec{T} = \vec{N} \times \vec{B}$ and $\vec{N} = \vec{B} \times \vec{T}$ show that $\vec{T} \times \vec{N} = \vec{B}$ Use properties of cross product.