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Sequence, Series and Series expansion

By now, any students in this level of Calculus have seen the concept of Sequences and
Series in algebra or pre-Calculus classes. I am not going to repeat all the information that
you already know. This is a new way of looking at the Sequences and Series. It preserves
the main fundamental idea of calculus which is continuity of Space and time to make a
meaningful reason why we are covering Sequences and Series in a Calculus class, plus also
why we cover Sequence and Series in absence of complex space.

Think of Sequences(a,)as a function with an independent variable which is element of
Natural numbers (Domain : ¥) and each value of the Sequence is element of Complex

numbers. Almost all properties of functions in Calculus can be applied o Sequences by
keeping in mind that the sequences are not continues functions due the fact thatn e .

Series (Zan)ar'e sum of the Sequences(a,)and it analogous to evaluating an integral in

Calculus. So, the sum operator similar to integral operator is also a linear operator.
Llaf (x) +bg(x)] = aL[ f (x)]+bL[g(x)]

The Sequences similar to functions can approaches to a Number (It is called Converging
Sequence) or does not go to a Number (it is called Diverging Sequence).

The Series similar to evaluation of an integral can approaches o a Number (It is called
Converging Series) or does not go to a Number (it is called Diverging Series).

In almost all the cases in application it is desire for series to converge if it doesn't then
sometimes there are techniques o make them converge.

In this section we will look at 9 different tests for convergent of a Series. Unfortunately
(sadly) there will be not much of proofs. Mostly we base them on logic and intuition. Lots
of the proofs must be done in Complex space which we haven't study yet.

I will wave my hands on some of these proofs to give some sense to them. Let's start:

Definition: If the Sequence approaches to a humber then it is a converging Sequence. The
underline a number has two properties. a) It is a single number. b) It is a finite number.

lima, = A Number

Nn—>0
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Squeeze theorem: (Without proof) if Sequencesa, <b, <c, Vn 2 n,and lima, =limc, =L

n—0 n—>0

then they squeeze limb, =L

n—»0

=0=lima, =0 ‘ J

Hn—»00

Theorem: (Without proof) If limla,

Class work set #1

Indicate if the Sequence is Converges or Diverges, if it converges find the limit.

a) lim(1 +z)3" = b) lim(Tan™'n) = ¢) limTanh(n) =
n—»0 n n—>%0 n—0
p— n 2 —_—
d) 1imL’zl) = ) limSin"'(n)= f) lim Cosh(l) =
n—>x0 n n—0 n—>0 n
2) limnSin(L) = i) lime™ = 7y lim > _
Nn—»0 n n—0 n—0 n

Series and Sequences have different rules since the sum of a sequence is Series then to
find whether the Series converge /diverge, one must apply some tests on them.

Zero Test #1: If the Sequence of a Series does not approach fo Zero then it is a

Diverging Series. lima, #0 = Zan is Diverge. If a function approaches to a limit (not

n—0

zero) then the area under the curve increases larger and larger as the x goes fo infinity.

Geometric Series Test#2: Geometric Series are in the form of z‘al(r)”’1 where n starts
a,(1- )

N
from one. In algebra class we have seen the sumis > a,(r)"" =
1

and if 0<|r<1
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then the sum will be a finite number. If the Series has the form of a Geometric Series

0< |r| <1 Converges
with ratio less than One, then check the ratio (r).
|r| >1 Diverges

If any number (—1<x<1) raised to n>1the result is smaller than the number. x" < x

1
Hyper harmonic Series Test #3:are in the form on—pwher‘e n starts from one.
n

If the Series has the form of a hyper harmonic Series, then check the exponent (p).

P>1 Converges

In case P =1the Series is called Harmonic Series
P <1 Diverges

Telescopic Test #4: Telescopic method is when the series is expanded and the terms
cancel so the series reduces to a limit.

2.4, 2.b, D(a,+b)| > (a,~b,)

Converge | Converge | Converge | Converge

Diverge | Diverge Diverge Need a test
Converge | Diverge Diverge Diverge
Diverge | Converge | Diverge Diverge

Class work set #2

Indicate if the Series is Converges or Diverges. (Use Test zero fo Test #4)

a) i(l—%)" - b) i(n21_1)= ¢) iTanh(n):
Sin_l(l)
) Z Szngn) _ e) Z ll’l — f) ZCOSh(l) —
o ' Sin(-) ! "
n
N Lol & n
& 2 mSinC)= D 25= D2 T
SV - €y _ N n_—l —
k) 22(5) = ) Z(ﬂ) m) ZLH(HH)
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n) i(i)2 = 0) ilo“’(%) - ) i Si'; 2(n) _

Ratio Test #5: Let Zan be a positive term series then Ratio test gives the following
r>1 Diverges
information about the series lim 2L ={ =1 No Conclusion

n—w

r <1 Converges

Root Test #6: Let Zan be a positive term series then Root test gives the following

R >1 Diverges
information about the series lnn'{/_ =<sR =1 No Conclusion

n—»0

R <1 Converges

Integral Test #7: Let Zan be change to '[f(x)dx. Integral test gives the following

Infinite Area — Diverges

information about the series. If(x)dx =
/ Finite Area — Converges

Class work set #3

Indicate if the Series is Converges or Diverges. (Use Test #5 to Test #7)

S 6+2" (n+2)! <
0)21:4+3n_ )Z(n Dot Zl“n(n+2)
d) inTan’l(n2)= e) ie%n_l= /) i(nn—zl),, =

2 (2n+5)! R AN
QL Gy - D= UM

Comparison Test #8: Let > a,and > b, be a positive term series.

5|Page



i) If a, <b,and > b, Converges, then )" q, Converges
i) If a, <b,and> a, Diverges, then > b, Diverges

Limit Comparison Test #9: Let > a,and > b, be a positive term series.
For a knowna,, if lim <2 = A non-zero number then a, and b are either Convergent or both

n—>x0

Divergent.

Class work set #4

Indicate if the Series is Converges or Diverges. (Use Test #7 to Test #8)

- Sinz(n)_ SV < [
%) Zl: o 5) ;(nz—l)_ ) Zn(n+2) B

- Sin(n) S 6+2" - n
d)Z e 6)24+3"_ f)gnz—z_
O X )= W)Y DS

Alternative series

If the terms of a series alternate in sign then the series is called Alternating Series. It is

N
represented as Z (-)'a,.
0

an+1 S an

e For an alternative Series to converge, fwo conditions must hold.{lima _0

o If ) |a,|Converges then the Series Absolutely Converges
o If Z|an|Diver'ges then the Series Conditionally Converges
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> |a.|Converges

Absolutely Converge

Iac-': Sa‘
|lima, =0
s

Convergent

e > |a_|Diverges

Conditionally Converge

Otherwise the Series Diverges.

Class work set #5

")i =D’ Z D" z( )" (n* -5) d)i(—l)” {n

(n+1)! —  (2n-1) ~ n-5

S P S 1y & (D)
e)z2n1/ln(n) f)Z(—z)" 9)2( —1)’+1 h)23n+4

Radius of Convergent

=-1, x=1. At these points

On Graph of y =

the function is not defined and its value goes to infinite nearby these points. These points
are Singularity of the function. Any other point on the function gives a finite value so the
function (Sequence) is Converging. Radius of Convergent is the distance from a given point
to the nearest Singularity. For the point at x =0.9 then the radius of Convergent is 0.10 to
x=1. And at pointx =-0.4is 0.60 tox =—1.

Why do we call this distance a radius? On Graph of y = 21 x
X"+

Singularities at x =—i, x =1 in Complex plane. This distance is radius of a ball in Complex

N- Dimension.

Class work set #6

(2x)"

S o

T 2" T n — (Bn+l)

&
~Ms
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2 (x=2)" D)"(2x-3)" 2n) X )'Bx+1
R

Taylor Series expansion

Taylor Series was introduced by Brook Taylor in 1715, although it was known to James
Gregory at least 45 years earlier. Its importance was not fully recognized until 1755 when
Euler applied it in his development of differential calculus. The proof of the "Taylor
Series" starts with the Fundamental Theory of Calculus.

jf "(x)dx = f(x)— f(a) so, f(x)=f(a)+ j £'(x)dx similarly we have
£ = £+ jf”(x)dx So. f(x)is f(x)= f(a)+ Bf’(a) + j:’f”(x)dX}dx
()= fa)+ f’(a)(x—a)+:|jj: f"(x)dxdx € Double integral

Repeating the same concept f"(x) = f"(a) +E M(x)dx

£ = f(@)+ fax—a)+ iEff”(a) + if”’(x)dx}dxdx

zZ Z 2z

f)=f(@)+ f'(a)(x—a)+— f (a)(x—a)’ +”jf”’(x)dxdxdx &Triple integral

aaa

Repeating this process for some more tferms we have the Taylor expansion

109 =f@+ f@-ays LD (o af 4o LOECAT

The above formula allows you to find Taylor expansion of (almost) any function near a point.
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For the given function f(x)

1- Take the first few differentiation of the function.

2- Evaluate the derivatives at point "a"

3- Use the above values and value of "a" to write out the expansion

4- If it is possible to write the expansion in a compact form (Sun notation)
You have seen linearization in Cal 1A which is the first two terms of expansion

Isaac Newton used the linearization of a function for a small change in distance compare
to large distances measured, so he did not need to expand the function o more than two
terms of expansion. Others took the concept of expansion and extended to more ferms

Classwork set #7

Find the "Taylor Series” of the following functions at x =a =0 (Maclaurin)

a) y=e" b) y=Cosx c) y=Sinx d) y=xSinx
1 -
e) y=—- N y=—s5 g) y=Ln(l-x) h) y=Tan x
l-x I+x
X 2 x3 xn n xn
Let's look at the expansion of y=¢*. We havee” 1+ —+"—+"—t+o0e+— =) ——
o2t 3l nl T n

2
That means ¢* ~1(at zero) and " z1+% (at & away vicinity of zero) e* zl+%+% as the

point gets farther. And So on.

Other ways of finding Taylor expansion are as follows: a) Decomposition b) Substitution c)
Integration d) Differentiation e) combination
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Decomposition

We have seen in Cal 1B that e™ = Cos(x) +iSin(x)and in pre Calculus courses we showed
that Cos(x)is an even function, where as Sin(x)is an odd function
i x x> x xt X X @)"x"

e rRl+i————i—+—+i———o00e
o203 4 56l n!

Re-Collecting the real parts and imaginary parts in to two sets

2 4 6 1\ 2 3 5 _qynl 204
e N[l—x— x__x_...+%]+i[£_x_+x_...+( 1) X ]:
2046 (2n)! o3 s (2n+1)!

z( 1)n 2n ; (_1)n+1x2n+1

Then we get the expansion for Cos(x), Sin(x)
T (2n)! 5 (2n+1)!

N n (_1) x2n ) . n (_1)n+1x2n+l
Cos(x)~;—(2n)! and  Sin(x) ;—(2n+1)!

Substitution

< 1
We have seen in Pre Cal ‘rha‘er” = l—For' small x. So, to find Series expansion of
- X

1
a) ——Use Substitution x — —x then b _Z( D" x
I+ x I+x 5

. Use Substitution x — x? then — =>x
X X 0

b)

1
~Use Substitution x — —(x”) ‘rhen
1+ x

S EEOE RS

Integration

We have seen in Cal 1B ‘rha‘rJ‘%dx =Ln(1+x)+c. To find Series expansion of
+x
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a) Ln(1+ x)Use integrate of L‘rhen Ln(1+x) = zﬂx’”'
I+ x o n+l

b) Ln(1-x)Use integrate of L’rhen Ln(1-x)=- Lx”+1
1-x o n+l1

1 - S (=D s,
¢) Tan'x Use integration of i then Tan l(x) = Zolmxz “

Differentiation

We have seen in Cal 1B Tha‘rdiSinx = Cosx. To find Series expansion of
A

n_(__1\yntl .2n+l n_o(_ 2n
a) Cosx Use differentiation of Sinx then Cosx = iz(l)—x = Zm
dx T (2n+1)! > (2n)!

1 1 d n n
b Use differentiation of —— then —— Y (=1)"x" = n(=1)""x""!
Y 1+ x dx;( ) Z =D

Combinatiation

a) xTan 'x Use product of xand Tan™'(x)then xTan™ (x) = Z;_—l)lxz'”z
0 <hn+

n_ ¢ 1\ntl . 2n+2
b) xSinx Use product of xand Sinxthen xSinx = z(l)—x
o (2n+1)!

The series expansion of a function can be used to find limit of a function or evaluation of
integral (in a very small interval nearby the desire point).
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Let's look at two examples
2 3
X X
1—Cosx + Sinx l_(l_?""")"‘(x_;"‘”‘)
@) lim =lim
x—0 X 0 X .

:l—1+x:1

% 0.1 XX el
b = (x—xN)dx =(——-=) /)
>£xe [, G=xhde ==

Application

The value of e, 7,and iare the most interesting values to mathematics and Sciences.

Let's find the estimation of each. We have the Series expansion

ex:1+x+lx2+lx3+lx4+lx5+...‘rhen el:1+l+l+l+...+l+lz2.71828153
2! 3! 4! 5! 20 31 4 8 9l

tan x=x——x"+—x +...

1 1 1
r=4tan" () =4(l—-=+=———+...
(D) =4( 37377 )

Unfortunately this series converges too slowly fo be used for computation.
This is a better Series 7 = 4(tan™ %+tam1 %).This was infroduced by Leibniz in 1674.

Examples-Approximate In(1.2) and Sin(0.1)

2 3 4 2 3 4
1n(1+x):x—x—+x——x—+.. ln(1+0.2):O.2—(0'2) +(0'2) _02) +...
2 3 4 2 3 4

Approximation with only 4 terms In(1.2) = 0.1822666 which has an error of 18.232%

3 5 7
X X

Sinx=x——+"—-—-"—+... where x = 0.1
3 57

Practice Estimate Sin(46°),Cos(0.1),In(0.9)
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Note: in the case of angles, we have to evaluate them in Radians

We have work with Hook's law F =—kxand potential energy of Spring PE = (1/2)kx>
Potential Energy for spring is a function of x, we can expand the function f(x) by Taylor
Series. f(x)= f(x,)+ f'(x,)(x—x,)+ %!f”(xo)(x —x,)" +...

Maximum potential energy is when f”(x,) = 0and all the energy is potential, take f(x,)as

origin so that f(x,) =0. Then we left with f(x) = %f"(xo)(x—xo)zsince the second

derivative is constant at x =x, ( f"(x,) = k) then the Potential Energy is PE = %kxz.

Solving Differential equations

Solve y"=1-xy at point (1,0)
x=1 y=0 y' =1
yi=—y-xy'=-1

ym — _2yr —Xy” =_1

nrn

y =_3yﬂ_xym=4

- PNt PPIE Sl DAV N B LY
y(x)=0+1(x-1)+ 0 (x=1 +3! (x—1) +4!(x D™ +..

Solve the following Diff. Eq Classwork #8

a) y'=x+2yat (0,])
b) y'=x+2y at (1,0)

c)y' = yx at (0,0)
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