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Sequence, Series and Series expansion 

By now, any students in this level of Calculus have seen the concept of Sequences and 
Series in algebra or pre-Calculus classes. I am not going to repeat all the information that 
you already know. This is a new way of looking at the Sequences and Series. It preserves 
the main fundamental idea of calculus which is continuity of Space and time to make a 
meaningful reason why we are covering Sequences and Series in a Calculus class, plus also 
why we cover Sequence and Series in absence of complex space.  

Think of Sequences )( na as a function with an independent variable which is element of 

Natural numbers ):( ÀDomain and each value of the Sequence is element of Complex 

numbers. Almost all properties of functions in Calculus can be applied to Sequences by 
keeping in mind that the sequences are not continues functions due the fact that ÀÎn .  

Series )(å na are sum of the Sequences )( na and it analogous to evaluating an integral in 

Calculus. So, the sum operator similar to integral operator is also a linear operator. 

)]([)]([)]()([ xgbLxfaLxbgxafL +=+   

The Sequences similar to functions can approaches to a Number (It is called Converging 
Sequence) or does not go to a Number (it is called Diverging Sequence). 

The Series similar to evaluation of an integral can approaches to a Number (It is called 
Converging Series) or does not go to a Number (it is called Diverging Series). 

In almost all the cases in application it is desire for series to converge if it doesn’t then 
sometimes there are techniques to make them converge. 

In this section we will look at 9 different tests for convergent of a Series. Unfortunately 
(sadly) there will be not much of proofs.  Mostly we base them on logic and intuition. Lots 
of the proofs must be done in Complex space which we haven’t study yet. 

I will wave my hands on some of these proofs to give some sense to them. Let’s start: 

Definition: If the Sequence approaches to a number then it is a converging Sequence. The 
underline a number has two properties. a) It is a single number. b) It is a finite number. 

NumberAann
=

¥®
lim     
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Squeeze theorem: (Without proof) if Sequences nnn cba ££ 0nn ³" and Lca nnnn
==

¥®¥®
limlim

then they squeeze Lbnn
=

¥®
lim      

 

Theorem: (Without proof) If 0lim0lim =Þ=
¥®¥® nnnn
aa  

 

Class work set #1 

Indicate if the Sequence is Converges or Diverges, if it converges find the limit. 
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Series and Sequences have different rules since the sum of a sequence is Series then to 
find whether the Series converge /diverge, one must apply some tests on them.    

 

Zero Test #1: If the Sequence of a Series does not approach to Zero then it is a 
Diverging Series. 0lim ¹

®¥ nn
a  åÞ na is Diverge. If a function approaches to a limit (not 

zero) then the area under the curve increases larger and larger as the x goes to infinity. 

 

Geometric Series Test#2: Geometric Series are in the form of å -1
1 )( nra where n starts 

from one. In algebra class we have seen the sum is 
)1(
)1()( 1
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1 r
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then the sum will be a finite number. If the Series has the form of a Geometric Series 

with ratio less than 0ne, then check the ratio (r). 
ïî

ï
í
ì

³

<<

Divergesr

Convergesr

1

10
. 

If any number ( 11 <<- x ) raised to 1>n the result is smaller than the number. xxn <  
 

Hyper harmonic Series Test #3:are in the form ofå pn
1

where n starts from one. 

If the Series has the form of a hyper harmonic Series, then check the exponent (p). 
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1
 In case 1=P the Series is called Harmonic Series 

 
Telescopic Test #4: Telescopic method is when the series is expanded and the terms 
cancel so the series reduces to a limit. 
 
å na  å nb  å + )( nn ba

 
å - )( nn ba  

Converge Converge Converge Converge 
Diverge Diverge Diverge Need a test 
Converge Diverge Diverge Diverge 
Diverge Converge Diverge Diverge 

 

Class work set #2 

Indicate if the Series is Converges or Diverges. (Use Test zero to Test #4) 
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Ratio Test #5: Let å na be a positive term series then Ratio test gives the following 

information about the series 
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Root Test #6: Let å na be a positive term series then Root test gives the following 

information about the series 
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Integral Test #7: Let å na be change to ò
¥

a

dxxf )( . Integral test gives the following 

information about the series.  
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Class work set #3 

Indicate if the Series is Converges or Diverges. (Use Test #5 to Test #7) 
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Comparison Test #8: Let å na and å nb be a positive term series.  
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i)  If nn ba £ andå nb Converges, then å na Converges   

ii)  If nn ba £ andå na Diverges, then å nb Diverges 
 
 
Limit Comparison Test #9: Let å na and å nb be a positive term series.  

For a known na if =
¥®

n

n

n b
alim A non-zero number then nn banda are either Convergent or both 

Divergent.  
 

Class work set #4 

Indicate if the Series is Converges or Diverges. (Use Test #7 to Test #8) 
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Alternative series 

If the terms of a series alternate in sign then the series is called Alternating Series. It is 

represented aså -
N

n
n a

0

)1( .  

• For an alternative Series to converge, two conditions must hold.
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• If å na Converges then the Series Absolutely Converges 

• If å na Diverges then the Series Conditionally Converges 



7 | P a g e  
 

 
Otherwise the Series Diverges. 

Class work set #5 
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Radius of Convergent 

On Graph of
1

1
2 -

=
x

y , there are two vertical asymptotes at 1,1 =-= xx . At these points 

the function is not defined and its value goes to infinite nearby these points. These points 
are Singularity of the function. Any other point on the function gives a finite value so the 
function (Sequence) is Converging. Radius of Convergent is the distance from a given point 
to the nearest Singularity. For the point at 9.0=x then the radius of Convergent is 0.10 to

1=x . And at point 4.0-=x is 0.60 to 1-=x . 

Why do we call this distance a radius?    On Graph of
1

1
2 +

=
x

y , there are two 

Singularities at ixix =-= ,  in Complex plane. This distance is radius of a ball in Complex 

N- Dimension.  

Class work set #6 
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Taylor Series expansion 

Taylor Series was introduced by Brook Taylor in 1715, although it was known to James 
Gregory at least 45 years earlier.  Its importance was not fully recognized until 1755 when 
Euler applied it in his development of differential calculus.  The proof of the “Taylor 
Series” starts with the Fundamental Theory of Calculus. 
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Repeating this process for some more terms we have the Taylor expansion 
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The above formula allows you to find Taylor expansion of (almost) any function near a point.  
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For the given function )(xf  

1- Take the first few differentiation of the function. 

2- Evaluate the derivatives at point “a” 

3- Use the above values and value of “a” to write out the expansion 

4- If it is possible to write the expansion in a compact form (Sun notation) 

You have seen linearization in Cal 1A which is the first two terms of expansion 

Isaac Newton used the linearization of a function for a small change in distance compare 
to large distances measured, so he did not need to expand the function to more than two 
terms of expansion. Others took the concept of expansion and extended to more terms  

 

Classwork set #7 

Find the “Taylor Series” of the following functions at 0== ax  (Maclaurin) 

xSinxydSinxycCosxybeya x ==== ))))

xTanyhxLnyg
x

yf
x

ye 1
2 ))1()

1
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+
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Let’s look at the expansion of xey = . We have å=+•••++++»
n nn

x

n
x

n
xxxxe

0

32

!!!3!2!1
1  

That means 1»xe (at zero) and 
!1

1 xex +»  (ate away vicinity of zero) 
!2!1

1
2xxex ++»  as the 

point gets farther. And So on. 

 

Other ways of finding Taylor expansion are as follows: a) Decomposition b) Substitution c) 
Integration d) Differentiation e) combination  
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Decomposition 

We have seen in Cal 1B that )()( xiSinxCoseix += and in pre Calculus courses we showed 

that )(xCos is an even function, where as )(xSin is an odd function 
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Re-Collecting the real parts and imaginary parts in to two sets 
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Substitution 

We have seen in Pre Cal that
x

x
n

n

-
=å 1
1

0

For small x. So, to find Series expansion of 

a) 
x+1
1 Use Substitution xx -®  then å -=

+

n
nn x

x 0
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1
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b) 21
1
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+

n
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2
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Integration 

We have seen in Cal 1B that cxLndx
x

++=
+ò )1(
1
1 . To find Series expansion of 
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a) )1( xLn + Use integrate of 
x+1
1 then å +

+
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n

n
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x
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1
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Differentiation 

We have seen in Cal 1B that CosxSinx
dx
d

= . To find Series expansion of 

a) Cosx Use differentiation of Sinx then =
+

-
= å
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Use differentiation of 
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Combinatiation 

a) xxTan 1-  Use product of x and )(1 xTan- then å +-

+
-

=
n

n
n

x
n

xxTan
0

221

12
)1()(  

b) xSinx  Use product of x and Sinx then =xSinx  å +
- ++n nn

n
x

0

221

)!12(
)1(  

The series expansion of a function can be used to find limit of a function or evaluation of 
integral (in a very small interval nearby the desire point). 
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Let’s look at two examples 
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Application 

The value of iande ,,p are the most interesting values to mathematics and Sciences. 

 Let’s find the estimation of each. We have the Series expansion 

...
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11 5432 ++++++= xxxxxex  then 71828153.2
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Unfortunately this series converges too slowly to be used for computation. 

This is a better Series )
3
1tan

2
1(tan4 11 -- +=p .This was introduced by Leibniz in 1674. 

Examples-Approximate )2.1ln(  and )1.0(Sin  

...
4
)2.0(

3
)2.0(

2
)2.0(2.0)2.01ln(..

432
)1ln(

432432

+-+-=++-+-=+
xxxxx  

Approximation with only 4 terms 1822666.0)2.1ln( @  which has an error of 18.232% 

...
!7!5!3

753

+-+-=
xxxxSinx   where x = 0.1 

 

Practice Estimate )9.0ln(),1.0(),46( CosSin !  



13 | P a g e  
 

Note: in the case of angles, we have to evaluate them in Radians 

We have work with Hook’s law xkF !!
-= and potential energy of Spring 2)2/1( kxPE =  

Potential Energy for spring is a function of x, we can expand the function )(xf  by Taylor 

Series. ...))((
!2
1))(()()( 2

00000 +-¢¢+-¢+= xxxfxxxfxfxf  

Maximum potential energy is when 0)( 0 =¢ xf and all the energy is potential, take )( 0xf as 

origin so that 0)( 0 =xf . Then we left with 2
00 ))((

2
1)( xxxfxf -¢¢@ since the second 

derivative is constant at 0xx =  ( kxf =¢¢ )( 0 ) then the Potential Energy is 2

2
1 kxPE = . 

 

Solving Differential equations 

Solve xyy -=¢ 1  at point (1,0) 

1=x   0=y   1=¢y  

...)1(
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4)1(

!3
1)1(

!2
1)1(10)(

43
12

1

432 +-+-
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+-
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+-+»

=¢¢¢-¢¢-=¢¢¢¢
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-=¢--=¢¢

xxxxxy
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Solve the following Diff. Eq Classwork #8  

)1,0(2) atyxya +=¢               

)0,1(2) atyxyb +=¢                 

)0,0() atyxyc =¢      

 


