Homework Chapter 13

1-  Find the limit of a, as n goes to infinity.

a) a, =vJn+a —Jn b) a, =In(Nn+a)- ln(\/;) c) a, = arctan(n)
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2-  Show that if the series converge or diverge. If it converges find its sum.
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3-  Show that if the series (Conditionally /absolutely) Converge or diverge.
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4-  Find radius and interval of convergence for each series
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5-  Find the power series representation for each function and determine the

radius of convergence.

a) f(x)=In(l+x) b) f(x)=Arctan(2x) ¢c)f(x)= Y d) f(x)= Lt
6-  Approximate the following integrals
0.2 1 0.5 0.5 , 0.5
a) -([1+x4 dx b) _([arctan(xz) dx  ¢) _([xz e dx d) _([Cos(xz) dx
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8-  Find the sum of the following series
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9- Use the series to evaluate the limit
Si Lo
Q) x—In(1+x) b):: 1— Cosx o inx —x+—x
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10-  Use power series for Arctanxto show 7 = 243 zi
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11-  Show that .[ & = ﬁﬂ' then use — to show that
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12-  Equal and opposite sign charges a distance d from each other create an
Electrical dipole. The electric field at a point P is E = %—Lz
D™ (D+d)
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(See the figure)
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Use power series of d/D to expand the field and show that [ ;i E = consta
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13- The equation for water wave is modeled asv? = i—ltanh(%). Show that
T

gA (if Water is deep)

27 Where d is the depth of the water.
v=./gd (if Water is Shallow)
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14-  The electric potential V at a point P due to a uniformly charged disk with radius
R, surface charge density o and a distance d from the point is

V =2mko(\d*> + R* —d). Where K is Coulomb's constant.
R’ o

Show that V' = for very large d

15-  Prove Taylor expansions
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