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Homework Chapter 13 

1- Find the limit of na  as n goes to infinity.  
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2- Show that if the series converge or diverge. If it converges find its sum. 
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3- Show that if the series (Conditionally /absolutely) Converge or diverge. 

 a) å
¥

1

2

nn
nSin   b) å

¥

1
22

)
6
(

n

nCos p

  c) å
¥

1 ln
1
nn

   

d)å
¥

+1 )3(
3
nn

 e)å
¥

+1
2)1(n

n  f)å
¥

+
+

1 42
51
n

n

  g)å
¥ +

1 10!
)!1(
nn

n  

h)å
¥ -

1 )!2(
)1(
n

n

 i)å
¥

+
-

1 12
)1(
n

n

  j)å
¥

+
-

1 )1ln(
)1(
n

n

  k)å
¥ -

1 )ln(
)1(
n
nn  

l)å
¥

+
-

1
3 1
5)1(

n

n

 m)å
¥ -

1 !
)100(

n

n

  n)å
¥

-
+-

1

2

)52(
)3()1(

n
nn

 o)å
¥

+
-

1

3

1
)1(
n

nn

  

p)å
¥ -

1 )ln(
)1(
nn

n

 q)å
¥

-1 )5( n

nn   r)å
¥

+-
-

1
2 5)4(
)1(

n

n

 s)å
¥ +

+
-

1

1

12
)1(
n

n

 

t)å
¥

+-
1

13
1

2
1

nn  u)å
¥ -

1

3
1

n   v)å
¥

+1
21 n

n             w)å
¥

1

22 )1(
n

Sinn  



2 | P a g e  
 

x)å
¥

-

1

2nen  y)å
¥

-
+

1

)
12
13( n

n
n  z)å

¥

1 3
10!
n

nn
  a*)å

¥ +

+
-

1

1

12
)1(
n

n

 

b*)å
¥

1

)ln(
ne
n  c*)å

¥

1
2)(ln

1
nn

 d*)å
¥

+1 13
5
n             e*)å

¥

-1
25
1
nn

 

f*)å
¥

1
2

)1(

n
n

Cos
 g*)å

¥

+1
2

3
4

58 nn
n  h*)å

¥ -

1

3)1(
n

n

e
n  j*)å

¥ -

1 !
)1(
n
nnn

 

4- Find radius and interval of convergence for each series 
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5- Find the power series representation for each function and determine the 
radius of convergence. 
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6- Approximate the following integrals 
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7- Show that 
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8- Find the sum of the following series 
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9- Use the series to evaluate the limit 
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10- Use power series for xArc tan to show å
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12- Equal and opposite sign charges a distance d from each other create an 

Electrical dipole. The electric field at a point P is
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(See the figure) 
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Use power series of d/D to expand the field and show that 
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13- The equation for water wave is modeled as )2tanh(
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Where d is the depth of the water. 

14- The electric potential V at a point P due to a uniformly charged disk with radius
R , surface charge densitys and a distance d from the point is 

)(2 22 dRdkV -+= sp . Where K is Coulomb’s constant. 
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15- Prove Taylor expansions 

 

 

 


