

Homework chapter 12

1- For $r(t) = \left\langle \frac{2}{3}t^3 + 4t, t^2, 3t \right\rangle$

- a) Find, a_T and a_N at $t = 2$.
- b) Find the osculating circle at $t = 2$.
- c) What happens to the curvature as t goes to infinity?

2- For $r(t) = \left\langle t, \frac{\sqrt{6}}{2}t^2, t^3 \right\rangle$

- a) Find the tangential and normal component of acceleration
- b) Find the osculating circle at $t = 2$.

3- Prove the formula for curvature in rectangular form and find the curvature of

$$f(x) = \tan x - x \text{ at } x = \frac{\pi}{6}$$

4- a) Find radius of curvature on $r(t) = \left\langle \cos t, \sin t, \frac{1}{2}t^2 \right\rangle$

b) Show that the radius is increasing at all time (except at $t = 1$).

5- Verify that for $r(t) = \left\langle \cos t, \sin t, t \right\rangle$ all the unit vectors $T(t)$, $N(t)$, and $B(t)$ are orthogonal to each other.

6- Prove the formula for curvature in polar forms and find the curvature of $r = \cos(2\theta)$

7- Show that $\frac{dN}{ds} = \tau B - \kappa T$

8- Prove that $\ddot{r} = \ddot{s}T + \kappa(\dot{s})^2N$

9- Prove that $\tau = \frac{(\dot{r} \times \ddot{r}) \bullet \ddot{r}}{|\dot{r} \times \ddot{r}|^2}$

10- Find the osculating circle to the curve $r(t) = \langle t, \frac{1}{2}t^2 \rangle$ at time $t = 1$ sec. And Find how fast the area of the circle increases as the time increases.

11- Prove the formula for curvature in parametric forms and find the curvature for $r(t) = \langle t, \frac{1}{3}t^3 \rangle$ at $t = 1$ sec

12- a) Graph $r_1(t) = \langle t, t^2 \rangle$ and $r_2(t) = \langle t, t^3 \rangle$. Plot points (Use $t = -2, -1, 0, 1, 2$)

b) Find $T(t)$, $N(t)$ and $B(t)$ for each vector functions.

c) Using $B(t)$ from above to conclude that there is no twisting in the vector functions, therefore easily one can find $N(t)$ from $T(t)$ without using any calculus.

d) Draw $N(t)$ and $T(t)$ in graph of part (a) for $t = -2, -1, 0, 1, 2$ sec

13- a) Graph $r_3(t) = \langle t, t^2, t^3 \rangle$. Plot points (Use $t = -2, -1, 0, 1, 2$)

b) Show that $T(t) = \frac{\langle 1, 2t, 3t^2 \rangle}{\sqrt{\text{Something}}}$ and $N(t) = \frac{\langle -4t - 18t^3, 2 - 18t^4, 6t + 12t^3 \rangle}{\sqrt{\text{Something}}}$

c) Find $B(t)$.

14- Show that if any ray parallel to axis of a parabola bounces off the parabola, it passes through the focal point of the parabola $r(t) = \langle t, ct^2 \rangle$

15- Show that if any ray originates from one focal point of an ellipse, after it bounces off the ellipse, it passes through the other focal point of the ellipse $r(t) = \langle a \cos t, b \sin t \rangle$

16- Show that if any ray originates from one focal point of a hyperbola, after it penetrates through the hyperbola, it passes through the other focal point of the hyperbola. $r(t) = \langle a \sec t, b \tan t \rangle$ or $r(t) = \langle a \cosh t, b \sinh t \rangle$

17- Find the arc length of a curve in 3 and 4 dimensions, and then give some reasoning for the result.

Vector in 3-D space $r(t) = \langle \cos t, \sin t, t \rangle$ and $|\dot{r}(t)| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}$

Vector in 4-D space $r(t) = \langle t, \cos t, \sin t, t \rangle$ and $|\dot{r}(t)| = \sqrt{-1 + \dot{x}^2 + \dot{y}^2 + \dot{z}^2}$

18- Given $\vec{r}(t) = \langle \frac{1}{2}t^2 - 1, 4t \rangle$ a) Graph $\vec{r}(t)$ for $t \geq 0$

b) Draw $\vec{v}(3)$, $\vec{a}(3)$, $\vec{T}(3)$, $\vec{N}(3)$, $\vec{B}(3)$

19- Given $\vec{r}(t) = \langle t, 2t, 2t \rangle$, Find $\vec{r}(s)$ and then show that $\kappa = \left| \frac{d\vec{T}}{ds} \right| = 0$

20- Find the arc length of $\vec{r}(t) = \langle 4t, \frac{1}{2}t^2, 3t \rangle$, $0 \leq t \leq t^*$.

21- Find $\vec{B}(12)$ For $\vec{r}(t) = \langle 3t, \frac{1}{2}t^2, 4t \rangle$

22- A particle at $t = -1$ second $\vec{r}(t) = \langle t, \frac{1}{3}t^3 \rangle$ moves with the rate of $|\vec{r}'| = v$ m/s and emits a particle in the direction of its velocity. The particle cuts the osculating circle of the curve at $t = 1$ sec in two points. How fast the distance of the points changes in terms of v ?