

Homework set Chapter 11

1- For line l : $p(3,2,-2)$ and $\vec{V} = \langle 1, -1, 2 \rangle$ and the plane S which contains points $A(1,2,1)$, $B(2,-1,2)$, and $C(0,-2,1)$.

- Find the point of intersection of the line and the plane. (time and space)
- Find the acute angle between the line and the plane
- How far the position of a particle on the line at $t = 2$ sec is away from the plane?
- If the source of light is shines normal to the plane, how fast the shadow of the particle is moving on the plane?

2- For the given Planes $S_1 : 2x + y - z = 4$ and $S_2 : x + 2y + z = -1$

- Find line of intersection of the planes
- Find the angle between the planes
- Graph the planes and indicate the line of intersection and the angle
- If a particle on plane S_1 at point $(1,1,-1)$ moves directly to point H on line of intersection of the planes, what are the coordinates of point H ?
- If the point $P(1,1,-1)$ shines a laser beam in the direction of $\vec{V} = \langle 1, -1, 1 \rangle$, what are the coordinate of point (Q) intersection of laser beam with plane S_2 ?
- Find the Area of a triangle made by point P , Q , and H as its vertices?

3- Solve the systems of equations by finding point of intersection of the planes.

$$\begin{cases} x + 2y - z = 3 \\ 2x + y + z = 4 \\ 2x - y + 2z = 5 \end{cases}$$

First find line of intersection of two planes and then use the line and the third plane to find the point of intersection.

4- A Laser beam at point $P(1,2,1)$ shines on to mirror $S: 2x + y - 2z = 6$, in the direction of $\vec{V} = \langle 2, 2, 1 \rangle$. We want to locate position of a detector after 2sec which the beam bounces off of the plane. How far this point is away from point $P(1,2,1)$?

5- A Laser beam at point $P(1, 1, -1)$ is aimed at point $Q(-2, -1, 0)$ after it bounces off of mirror $S: x + y - z = 4$. What is the location on the mirror which the beam bounces off of?

6- Given plane $S: x + y + z = 2$, Graph it

- a) Find the volume created by plane S and the coordinate planes in the first octant?
- b) Find the distance of the plane $x + y + z = 2$ to the origin.

7- Find a general formula for

- a) The distance of a point to a plane. (2 different methods)
- b) The distance between two parallel planes. (2 different methods)
- c) The distance between two skewed lines.
- d) The distance between a point and a line. (4 different methods)

8- Find the equation of tangent plane to the sphere with equation $C: x^2 + y^2 + z^2 = 9$ at point $P(2, 2, 1)$.

9- Find the parametric equation of line of intersection between two tangent planes to the sphere with equation $C: x^2 + y^2 + z^2 = 9$ at point $P(1, -2, 2)$ and $Q(1, 2, 2)$.

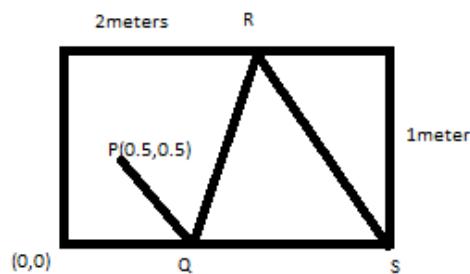
10- Show that a) the three points $A(1, 2, -1)$, $B(2, -1, 1)$ and $C(3, -4, 3)$ are collinear and find the line which passes through them. B) the four points $A(1, 2, 1)$, $B(0, -1, 1)$, $C(1, -4, 2)$ and $D(2, 1, 0)$ are not coplanar. Then find the distance of each point to the plane created by the other three points.

11- Find the relation between magnitude Dot product and Cross product.

12- Show that sum of the squares of the directional cosines is one.

13- You want to place the ball in to pocket at point S , while it bounces at point Q and R .

What are the locations of point Q and R on the rim of the pool table as shown?



14- Find the equation of the plane that passes through the point $(-1, 2, 1)$ and contains the line of intersection of the planes $x + y - z = 2$ and $2x - y + 3z = 1$.

15-Given a system of equations.

$$2x + y - z = 2$$

$$x + 2y + z = 1$$

$$2x - y - 2z = 3$$

a) Solve for line of intersection of first two planes.

b) Solve for the point of intersection of above line with the third plane.

16- Graph $x + y + z = 4$ and Find the closest point on the above plane to point $(-1, -3, 2)$

17- Graph $2x + y - z = 2$ Find the shortest distance from the plane to the origin in 4

different methods.

1) Partial derivatives. 2) Dot product. 3) Cross product. 4) Geometry

18-When a charge particle moves in an **electric field**. The force exerted on the charge

particle is $\sum \vec{F} = q\vec{E}$ where "q" is the charge and \vec{E} is the electric field (vector). We know

that $\sum \vec{F} = m\vec{a}$ then the $m\vec{a} = q\vec{E}$ can be used to find the mass of a charge particle if the

electric field, acceleration and charge of the particle are known. Find the mass of a

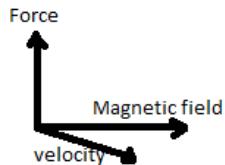
charged particle with $q = -2$ Coulomb in a field $|\vec{E}| = \sqrt{52} \times 10^{10} \text{ N/C}$ and acceleration

$$\vec{a} = \langle -16, -24 \rangle \times 10^{20} \text{ m/s}^2.$$

19- When a charge particle moves in a **magnetic field**. The force exerted on the charge particle is $\sum \vec{F} = q (\vec{v} \times \vec{B})$ where " \vec{v} " is the velocity of the particle and \vec{B} is the Magnetic field (vector). We know that $\sum \vec{F} = m\vec{a}$ then the $m\vec{a} = q(\vec{v} \times \vec{B})$ can be used to find the mass of a charge particle if the magnetic field, acceleration, velocity and charge of the particle are known. Find acceleration of a charged particle with

$m = 5 \times 10^{-10} \text{ Kg}$ and $q = -5 \times 10^{-6} \text{ C}$ in a field $\vec{B} = \langle 10, 20 \rangle \text{ Tesla}$ and velocity

$\vec{v} = \langle 8, -4 \rangle \times 10^6 \text{ m/s}$. Find angle between acceleration / velocity and acceleration / magnetic field.



20- When a particle moves in straight line, and then its **kinetic energy** is $KE = \frac{1}{2} m\vec{v} \bullet \vec{v}$

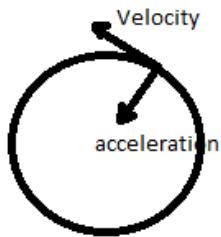
What is KE (in Joules) of a 2miligram fly that is going with velocity $\vec{v} = \langle 4, 3 \rangle \text{ m/s}$?

21- **Potential energy** of an object at height H is $PE = m\vec{g} \bullet \Delta \vec{H}$ where " \vec{g} " is acceleration of gravity and ΔH is change in height. A 2kg mass moved from point A(3, -4) to point B(5, 12).

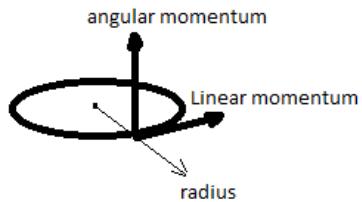
How much work was done on the object? $\vec{g} = \langle 0, -10 \rangle \text{ m/s}^2$

22- **Central petal force** on an object is a fictitious force due to rotation. If a mass moves around a circle of radius R with linear speed of \vec{v} , then the magnitude of the central petal

force will be $|\vec{F}| = m \frac{\vec{v} \bullet \vec{v}}{R}$ and the direction is toward the center of circle. What is acceleration (direction and magnitude) of a mass going around a circle ($R = 0.5m$) and $\vec{v} = \langle -5, 12 \rangle m/s$. Show that acceleration is inversely proportional to the radius.



23- Angular momentum of an object is $\vec{L} = \vec{r} \times \vec{P}$ where change in linear momentum for constant mass is $\Delta \vec{P} = m \Delta \vec{v}$. Find \vec{L} for a 0.5 kg object going around a circle $\vec{r} = \langle 3, 2 \rangle m$ and $\vec{v} = \langle -10, 6 \rangle m/s$



24- Angular momentum in 3D: Find \vec{L} for a 0.5 kg object going around a circle $\vec{r} = \langle 3, 4 - 2 \rangle m$ and $\vec{v} = \langle 8, 4, 6 \rangle m/s$

25- Find acceleration of a charged particle with $m = 5 \times 10^{-10} \text{ Kg}$ and $q = -5 \times 10^{-6} \text{ C}$ in a field $\vec{B} = \langle 10, 20, 5 \rangle \text{ Tesla}$ and velocity $\vec{v} = \langle 8, -4, 12 \rangle \times 10^6 m/s$. Find angle between acceleration / velocity and acceleration / magnetic field.

26- Find area of a triangle with vertices $A(2, 3, 6)$ and $B(3, 2, 5)$ and $C(1, 3, 4)$.

27- Find volume of a tetrahedron created by $\vec{V} = \langle 3, 2, 5 \rangle$, $\vec{U} = \langle 3, 2, 6 \rangle$, $\vec{W} = \langle 1, 4, 6 \rangle$

28- Find the net force for $\vec{F}_1 = \langle -3, 5, -6 \rangle N$, $\vec{F}_{32} = \langle 4, 2, 7 \rangle N$, $\vec{F}_3 = \langle 8, 4, 4 \rangle N$

, $\vec{F}_4 = \langle -5, 1, -2 \rangle N$. Then find the acceleration of a 2kg object which influences by these forces.

29- Prove the formula for dot product and cross product.

30- a) Find the line of intersection of $2x + y - z = 2$ and $x + 2y + z = 1$

b) Find the acute angle of the above planes.

c) Find point of intersection of the above planes with plane $x - y - z = 3$.

31- Find the closest point on plane $x + y + z = 4$ to the origin.

32- Find the line of intersection of $2x + y - z = 2$ and $x + 2y + z = 1$ then Find the acute angle of the planes.

33- A particle at $t = 0$ started at point $(4, 0, 3)$ in the direction $v = \langle -1, 2, 0 \rangle$ bounces off the surface $x - y + z = 4$.

A) Find the location of the particle after 4 sec.

B) Find the displacement during the interval $[0, 4]$ sec.

34-A particle at $t = 0$ was detected at point $(2, 1, 3)$. Then after it bounces off the surface $x + y + z = 3$ was observed at point $(2, 2, 2)$. For how long the particle was missing?
(How long did it take for particle to travel from one point to another?)

35- Given $r(t) = \langle t, \ln|t|, 2 \rangle$, $0 \leq t \leq \ln 2$

a) Show that $r(t)$ is a smooth vector function.

b) Find the length of the curve from $t = 0$ to $t = \ln 2$.

36-A particle with initial velocity $v_0 = 2\sqrt{2}$ m/s and $\theta = \frac{\pi}{4}$ is launched from the origin in a field with $a = \langle 0, -2, 0 \rangle$ m/s². Find all the points that the particle intersects the plane $S: x + y + z = 3$.

37-Two planes $S_1: x + 2y + z = 4$ and $S_2: x - y + z = 1$ intersect at line L.

Find the distance of the point P $(1, 0, 2)$ to both planes and line L.

38- What is the mirror image of vector $\vec{V} \langle 1, 2, 1 \rangle$ respect to $\vec{U} \langle 2, -1, 2 \rangle$

39- A boy on a skateboard is moving toward a basketball hoop at 2 m/s. The hoop is 3 meters above the ground. At time $t = 0$, the boy throws the ball from 2 meters above the ground at an angle of 45° when he is 6 meters away. How fast (in respect to him) does he have to throw the ball in order to make a basket?

40- Find the equation of the plane that passes through the point $(-1, 2, 1)$ and contains the line of intersection of the planes $x + y - z = 2$ and $2x - y + 3z = 1$.

41- Find the work done to move a 4kg mass with an acceleration $\vec{a} = \langle 2, -3, 1 \rangle$ from point $p(2, 4, 5)$ to point $Q(1, -3, 2)$.

42- Find magnitude of torque if the moment arm is $\vec{r} = \langle 2, 2, -1 \rangle$ and applied force is $\vec{F} = \langle 3, 4, -12 \rangle$. What is the angle between moment arm and the force in above question?

43- a) Find parametric equation of a line L whose passes through point $A(1, -1, 2)$, $B(2, -2, 3)$.

b) Find equation of a plane S_1 whose passes through points $C(3, -2, 2)$, $D(3, 2, 4)$, $E(4, 2, 1)$.

c) Find equation of a plane S_2 whose passes through point $F(1, -1, 2)$ and contains

$$\vec{r}(t) = \langle 2, 3, 1 \rangle + t \langle 1, 3, -2 \rangle.$$

d) Find equation of a plane S_3 whose contains $\vec{r}(t) = \langle -1, 1, 1 \rangle + t \langle 2, -2, 3 \rangle$ and

$$\vec{r}(t) = \langle 3, 2, 1 \rangle + t \langle -2, 1, 1 \rangle.$$

e) Find point of intersection of line L (from #43a) and each of the planes (from #43b, #43c, and 43d)

f) Find line of intersection of S_1 and S_2 . Call the line L_3 .

g) Find line of intersection of S_2 and S_3 . Call the line L_1 .

h) Find line of intersection of S_1 and S_3 . Call the line L_2 .

i) Show that any of the lines crosses the other planes exactly at the same point.

j) Find the angle between Lines L_1 , L_2 and L_1 , L_3 and L_3 , L_2 . What can you conclude?

k) Find the angle between Planes S_1, S_2 and S_1, S_3 and S_2, S_3 . What can you conclude?

l) Find the distance of point $P(1,4,-2)$ to lines L_1, L_2 , and L_3 .

m) Find the distance of point $P(1,4,-2)$ to Planes S_1, S_2 , and S_3

n) Find the area of ΔABC where $A(2,1,-1)$, $B(3,2,1)$, and $C(3,1,0)$

o) Find Volume of a parallelepiped with $A(1,2,-1)$, $B(2,1,3)$, $C(2,-1,2)$ and $D(2,1,2)$.

44- Go through all the 7 Geometric theorems and proof those using vectors.

45- Use a piece of paper to demonstrate all the axioms in origami.

46- Show that $\frac{d}{d\theta}U_r = U_\theta$ and $\frac{d}{d\theta}U_\theta = -U_r$ then show that

$$\vec{R} = rU_r \quad \vec{V} = r\dot{\theta}U_\theta + \dot{r}U_r \quad \vec{a} = (\ddot{r} - r\dot{\theta}^2)U_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})U_\theta$$

47- Show that $(r^2\dot{\theta}) = \text{Const}$ then $a_r = \frac{-K}{r^2}$

48- Show that $ASin\theta + BCos\theta = HCos(\theta - \beta)$ for value of $H = \sqrt{A^2 + B^2}$

49- Show the following relation in an ellipse $b^2 = a^2(1 - e^2)$ and $Pe = a(1 - e^2)$

50- Show the following relation $\frac{T^2}{a^3} = \frac{4\pi^2}{GM}$ between the period and mean distance of the planet to the sun.

51- Match that total energy for the following models of conic sections on v-x coordinates.

a) An oscillating spring on a horizontal plane with no friction.

b) An oscillating spring on a vertical plane (gravity) with no friction.

c) An oscillating pendulum on a vertical plane with no friction.