

Homework set #1

1- When a plane crosses a double cones connected at their vertex, it traces the graph of conics (Ellipse, Parabola, and Hyperbola). Find a relation between the **eccentricity** and the angle of the plane with horizon.

2-Given the equation $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ Show the following equations:

- The equation of an **ellipse** $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$

$$a = \frac{1}{2A} \sqrt{\frac{D^2C + E^2A - 4ACF}{C}} \quad b = \frac{1}{2C} \sqrt{\frac{D^2C + E^2A - 4ACF}{A}}$$

- The equation of **hyperbola** $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

$$a = \frac{1}{2A} \sqrt{\frac{D^2C - E^2A - 4ACF}{C}} \quad b = \frac{1}{2C} \sqrt{\frac{-D^2C + E^2A + 4ACF}{A}}$$

- The equation of **Parabola** $(y-k) = \frac{1}{4p}(x-h)^2$

$$\text{Where } h = \left(\frac{-D}{2A}\right), \quad k = \left(\frac{D^2 - 4AF}{4AE}\right), \quad p = \frac{-E}{4A}$$

- The angle of axes rotation to eliminate the cross term which can be calculated by $\tan(2\theta) = \frac{B}{A-C}$

3-Find rectangular equation of an object launched with the following parametric

equation $\begin{cases} x(t) = (v\cos\theta)t + x_0 \\ y(t) = -4.9t^2 + (v\sin\theta)t + y_0 \end{cases}$ if it launched from origin, use the rectangular

equation to find a) Maximum Range b) Maximum height

Is it possible to find **velocity of impact**? Find it.

4-Show that the parametric equation of all three different Cycloid can be written

as $\begin{cases} x(t) = a\theta - b\sin\theta \\ y(t) = a - b\cos\theta \end{cases}$ Then find the slope of the curve in terms of angle θ .

5-Show that the parametric equation of **all epicycle** can be written as

$$\begin{cases} x(t) = (a+b)\cos\theta - b\cos\left(\frac{a+b}{b}\theta\right) \\ y(t) = (a+b)\sin\theta - b\sin\left(\frac{a+b}{b}\theta\right) \end{cases}$$

6- Show that the parametric equation of **all hypocycloid** can be written as

$$\begin{cases} x(t) = (a-b)\cos\theta + b\cos\left(\frac{a-b}{b}\theta\right) \\ y(t) = (a-b)\sin\theta - b\sin\left(\frac{a-b}{b}\theta\right) \end{cases}$$

7-Show that polar graph of **Rose** and **cardioid** can be trace by **epicycles**

Problem 8,9,10, and 11 are about Cycloids

8-Graph a cycloid generated by a disc with radius one, then find the tangent line to the curve at $\theta = \pi/2$.

9- Find arc length and the area under the curve of a cycloid after one rotation of generating disc.

10- Find Surface area of rotating a cycloid after one rotation of generating disc around x axis.

11- If you double the radius of generating disc, by what factors the Arc length, the Area and the Surface area changes?

12- Find the area inside both functions. (Graph them)

$$r_1 = \sin(2\theta)$$

$$r_2 = \cos\theta$$

13- Find the tangent of the angle between the tangent lines of both graphs at the point of intersection.

14- Find the arc length for the parametric equation $\begin{cases} x(t) = \sin t \\ y(t) = 1 - \cos^2 t \end{cases} \quad 0 \leq t \leq \frac{\pi}{2}$

15-Given the polar function $r = \sin(t)$ and line $y = y_0$ where $y_0 < 0$

What must be y_0 such that the surface area of the function rotated around $y = y_0$ is three times bigger than the surface area rotated around $y = 0$.

16- Graph the function $r(\theta) = \cos(2\theta)$. Show that no part of the curve overlaps with itself.

17-Find the total area inside of curve $r^2 = 2\cos(2\theta)$ and outside $r = 1$

18-Find the total area inside of curve $r = 1 + \sin\theta$ and outside $r = 3\sin\theta$

19-Find the total area inside of the loop of $r = 2 + \sin\theta$

20-Given the equation of curvature in polar to be $\kappa = \frac{|2r'^2 - rr'' + r^2|}{[r'^2 + r^2]^{3/2}}$

Find the radius of the curve $r = \sin\theta$ at $\theta = \alpha$.

21-Find all the VERTICAL and HORIZONTAL slopes to the curve $r^2 = \sin\theta$

Rectangular

Polar

Parametric

$$\text{Arc length } L = \int_a^b \sqrt{1 + f'(x)^2} dx \quad L = \int_a^b \sqrt{r^2 + r'^2} d\theta \quad L = \int_a^b \sqrt{x'^2 + y'^2} dt$$

Surface area

$$\begin{array}{lll} S = 2\pi \int_a^b f(x) \sqrt{1 + f'(x)^2} dx & S = 2\pi \int_a^b r \sin\theta \sqrt{r^2 + r'^2} d\theta & S = 2\pi \int_a^b y(t) \sqrt{x'^2 + y'^2} dt \\ 2\pi \int_a^b f(y) \sqrt{1 + f'(y)^2} dy & S = 2\pi \int_a^b r \cos\theta \sqrt{r^2 + r'^2} d\theta & S = 2\pi \int_a^b x(t) \sqrt{x'^2 + y'^2} dt \end{array}$$

22- Find arc length for each and arrange them from highest to lowest

$$a) f(x) = \frac{2}{3}x^{\frac{3}{2}} \quad 1 \leq x \leq 8 \quad b) r = e^{3\theta} \quad 0 \leq \theta \leq 2$$

$$c) r = 2a \sin\theta \quad 0 \leq \theta \leq 2\pi \quad d) r = \sin^2\left(\frac{\theta}{2}\right) \quad 0 \leq \theta \leq \pi$$

$$e) \begin{cases} x(t) = 2t \\ y(t) = t^2 - 1 \end{cases} \quad -1 \leq t \leq 2 \quad f) \begin{cases} x(t) = t \sin t \\ y(t) = t \cos t \end{cases} \quad 0 \leq t \leq \pi$$

23- Find the Surface area rotated about given axis

a) $f(x) = \sqrt{x} - \frac{1}{3}x^{\frac{3}{2}}$ $1 \leq x \leq 3$ $x - axis$

b) $r = e^{3\theta}$ $0 \leq \theta \leq \frac{\pi}{2}$ $\theta = \frac{\pi}{2}$

c) $r = 2a \cos \theta$ $0 \leq \theta \leq \frac{\pi}{2}$ $Polar - axis$

d) $\begin{cases} x(t) = \sec t \\ y(t) = \tan t \end{cases} \quad 0 \leq \theta \leq \frac{\pi}{2}$ $y - axis$

e) $\begin{cases} x(t) = 4 \cos t \\ y(t) = 4 \sin t \end{cases} \quad 0 \leq t \leq \frac{\pi}{2}$ $x - axis$

f) $f(x) = \frac{1}{3}x^3$ $0 \leq x \leq 2$ $y - axis$

24- Find the area outside of $r^2 = \sin 2\theta$ and inside of $r = 2$ (DO NOT USE GEOMETRY)

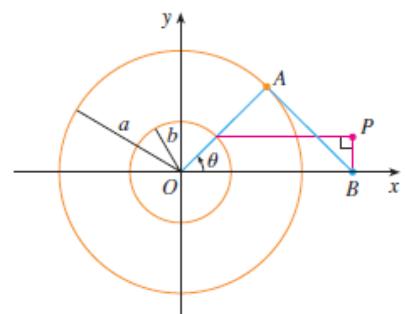
25- Use polar coordinate to find the area below line $x + y = 2$ from 0 to 2.

26- Write the polar and rectangular equation of a conic with focus at the origin

and $e = 0.8$, vertex $(1, \frac{\pi}{2})$ then graph it.

27- Find the arc length of the graph $x(t) = e^t - t$ $y(t) = 4e^{\frac{t}{2}}$ and $0 \leq t \leq \ln 2$.

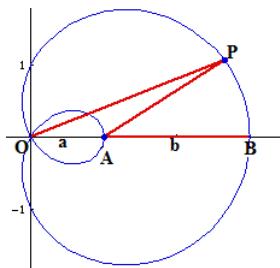
28- If a and b are fixed numbers, find the parametric equations for the curve that consists of all possible positions of the point P in the figure, using the angle θ as the parameter. The line segment AB is tangent to the larger circle.



29- Find the arc length of the graph $x(t) = e^{-t} + t$ $y(t) = 4e^{\frac{-t}{2}}$ and $0 \leq t \leq \ln 2$.

30- Find the surface area generated by rotating the $r^2 = \cos(2\theta)$ about the polar axes.

31- Use your pre-Calculus knowledge to find the relation between "a" and "b" such that $3\angle OPA = \angle PAB$ for any point p on the curve $r = a + b\cos\theta$



32- A particle launched from height of 30m with speed of 10m/s and angle of 60° in space which offers a gravitational acceleration of $-10 \frac{m}{s^2}$. As it bounces off the ground looses $2/3$ of its vertical velocity. Find the distance between the first and the second time that the particle hits the ground.

Use a Graphing Calculator for problem 33 and 35

33- Show the equations for Epitrochoid $\begin{cases} \text{Rose} \\ \text{Hypotrochoid} \\ \text{Cardioid} \\ \text{Nephroid} \end{cases}$ and Hypotrochoid $\begin{cases} \text{Hypocycloid} \\ \text{Ellipse} \\ \text{Deltoid} \\ \text{Astroid} \end{cases}$

And Go online to graph each one of the above functions (make sure to vary the radii)

34- Proof a parametric equation for Prolate and Curtate

35- Given the following parametric equation $\begin{cases} x(t) = r \sin(\omega t + \varphi) \\ y(t) = R \sin(t) \end{cases}$ Use a graphing Calculator

to graph the above equation with specific values $R = r = 1$ otherwise it is given

$\omega = 1, \varphi = 0.5, R = r = 1$	$\omega = 1, \varphi = 0.5, R \neq r$	$\omega = 0.5, \varphi = \pi/4$	$\omega = 1, \varphi = 0$
$\omega = 1/2, \varphi = 0, R = r = 1$	$\omega = 1/3, \varphi = 0, R = r = 1$	$\omega = 1/4, \varphi = 0$	$\omega = 2/5, \varphi = 0$
$\omega = 1/2, \varphi = 0, R = 2, r = 1$	$\omega = 3/5, \varphi = 0, R = 2, r = 1$	$\omega = 3/5, \varphi = 0, R = 2, r = 1$	$\omega = 3/5, \varphi = \pi/3$